HDF5 MCS Raw Data Definition

Aus Multi Channel Systems Wiki

Inhaltsverzeichnis

- 1 Definition of the HDF5 format for raw data
- 1.1 Changelog
- 2 Hierarchy
- 3 Root-Folder "/"
- 4 Folder "Data"
- 5 Folder "Recording_x"
- 6 Folder "AnalogStream"
- 7 Sub-folder "Stream_x" of "AnalogStream"
- 8 Folder "FrameStream"
- 9 Subfolder "Stream_x" of "FrameStream"
- 10 Subfolder "FrameDataEntity_x"
- I1 Folder "EventStream"
- 12 Subfolder "Stream_x" of "EventStream"
- 13 Folder "SegmentStream"
- 14 Subfolder "Stream_x" of "SegmentStream"
- 15 DataSubType-Average: Subfolder "Stream_x" of "SegmentStream"
- 16 Folder "TimeStampStream"
- 17 Subfolder "Stream_x" of "TimeStampStream"
- 18 Comment

Definition of the HDF5 format for raw data

MCS-HDF5 Protocol Type: RawData (Raw-Data protocol)

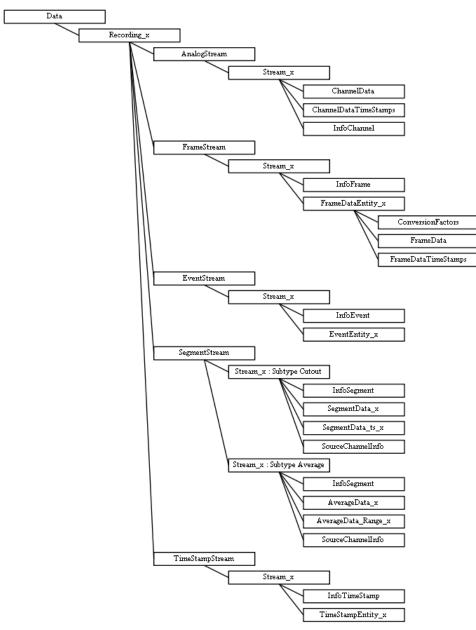
Protocol Version: 3 based on the definitions of RawDataFileIO in version 10.

All strings are only ASCII-encoded

Changelog

Version 1:

Initial draft


Version 2:

New Root-Folder attributes added to detect name and version of the creating application and library

Version 3:

Data structures for DataSubType::Average of StreamType::Segment added

Hierarchy

Root-Folder "/"

Contains all information for one experiment - measured data (inside the folder Data) and a description (possibly in the future) inside the folder Experiment/Description/...

Attributes:

Name	Description	Data Type	MCS-HDF5 Protocol Version
McsHdf5ProtocolType	Type of the used MCS-HDF5 protocol definition (e.g. RawData for the raw data MCS-HDF5 definitions)	[String,Scalar]	1 ≤
McsHdf5ProtocolVersion	Version number of the used MCS-HDF5 protocol	[Integer,Scalar]	1≤
GeneratingApplicationName	Name of the application that generated this HDF5 file	[String,Scalar]	$2 \leq$
GeneratingApplicationVersion	Version of the application that generated this HDF5 file	[String,Scalar]	2 ≤
McsDataToolsVersion	Version of the McsDataTools library that was used by the application to create the HDF5 file	[String,Scalar]	2 ≤

Datasets:

none

Folder "Data"

Navigation: /Data

Contains all recordings for this experiment.

Attributes:

Name	Description	Data Type
ProgramName	Name of the recording program	[String,Scalar]
ProgramVersion	Version number of the recording program	[String,Scalar]
MeaName	Name of the recorded MEA	[String,Scalar]
MeaLayout	Layout descriptor	[String,Scalar]
MeaSN	Serial number of the MEA	[String,Scalar]
Date	Date of the recording	[String,Scalar]
DateInTicks	Date of the recording in .NET ticks (100 ns)	[Long(64-bit Integer),Scalar]
FileGUID	GUID of the converted raw data file	[String,Scalar]
Comment	Comment	[String,Scalar]

Datasets:

none

Folder "Recording_x"

Navigation: /Data/Recording_x

Contains all recorded streams for recording x.

Attributes:

Name	Description	Data Type
RecordingID	Recording ID	[Integer(32-bit Integer),Scalar]

RecordingType	Recording type	[String,Scalar]
TimeStamp	Start time of the recording in microseconds	[Long(64-bit Integer),Scalar]
Duration	Total recording duration in microseconds (This duration can differ from the actual duration of the recorded data!!!)	[Long(64-bit Integer),Scalar]
Label	Label	[String,Scalar]
Comment	Comment	[String,Scalar]

Datasets:

none

Folder "AnalogStream"

Navigation: /Data/Recording_x/AnalogStream

(Organisational) folder for all channel-based streams of this recording

Attributes:

none

Datasets:

none

Sub-folder "Stream_x" of "AnalogStream"

Navigation: /Data/Recording_x/AnalogStream/Stream_x

Container for an analog stream

Attributes:

Name	Description	Data Type	StreamInfoVersion
StreamInfoVersion	Version number of the meta information structure	[Int(32-bit Integer),Scalar]	$1 \leq$
Label	Label	[String,Scalar]	1 ≤
SourceStreamGUID	GUID of the source streams	[String,Scalar]	1 ≤
StreamGUID	GUID	[String,Scalar]	$1 \leq$
StreamType	Type of the stream, e.g. Electrode	[String,Scalar]	$1 \leq$
DataSubType	Sub-type of the analog stream (e.g. Analog)	[String,Scalar]	1 ≤

Datasets:

- Matrix InfoChannel → n × 16 matrix of describing information vectors for the n channels:
 Attributes: InfoVersion → Version number of the Info-Objects [Int(32-bit Integer),Scalar]

Name	Description	Data Type	InfoVersion
ChannelID	ID of the channel as given by the recording software	[Int(32-bit Integer),Array(Size 1)]	$1 \leq$

RowIndex	Row number of this channel inside the ChannelData matrix where the data of this channel is stored	[Int(32-bit Integer),Array(Size 1)]	1 ≤
GroupID	ID of the group that this channel belongs to	[Int(32-bit Integer),Array(Size 1)]	1≤
Label	Label of the channel	[String,Array]	1 ≤
RawDataType	Type of the raw data	[String,Array]	1≤
Unit	Physical unit of the measured sensor value	[String,Array]	1≤
Exponent	Exponent $n \Rightarrow 1En$ resp. 10^n in which the channel values magnitude is measured (e.g. k,m, μ ,)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
ADZero	ADC-Step that represents the 0-point of the measuring range of the ADC	[Int(32-bit Integer),Array(Size 1)]	1≤
Tick	Sample tick Δ between two sample points of a channel in μ s \Rightarrow sampling frequency = 1000000 / Δ	[Long(64-bit Integer),Array(Size 1)]	1 ≤
ConversionFactor	Conversion factor for the mapping ADC-Step \Rightarrow measured value	[Long(64-bit Integer),Array(Size 1)]	1 ≤
ADCBits	Number of bits used by the AD-Converter	[Int(32-bit Integer),Array(Size 1)]	1 ≤
HighPassFilterType	Type of the high-pass filter (empty string if not available)	[String,Scalar]	1≤
HighPassFilterCutOffFrequency	Cut-off frequency of the high-pass filter ('-1'-String if not available)	[String,Scalar]	1≤
HighPassFilterOrder	Order of the high-pass filter (-1 if not available)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
LowPassFilterType	Type of the low-pass filter (empty string if not available)	[String,Scalar]	1 ≤
LowPassFilterCutOffFrequency	Cut-off frequency of the low-pass filter ('-1'-String if not available)	[String,Scalar]	1 ≤
LowPassFilterOrder	Order of the low-pass filter (-1 if not available)	[Int(32-bit Integer),Array(Size 1)]	1 ≤

• 2-dimensional Data-Matrix ChannelData \rightarrow Data for sampled channels organized as n \times m matrix \Rightarrow one row per channel and one column per sample time point

reconstruct the value of the measured signal:

 $y(\text{channel}, t_{ind}) = (\text{ChannelData}[\text{InfoChannel}[\text{channel}]. \text{RowIndex}, t_{ind}] - \text{ADZero}) * \text{InfoChannel}[\text{channel}]. \text{ConversionFactor} * 10^{\text{InfoChannel}[\text{channel}]. \text{Exponent}} \text{ in InfoChannel}[\text{channel}]. \text{Unit}$

- reconstruct the sample time point: $t = t_{ind} * \text{InfoChannel[channel]}$. Tick in μs
- Matrix ChannelDataTimeStamps \rightarrow k × 3 matrix of segments where the rows are one segment and the columns are:
 - first column \rightarrow time stamp of the first sample point of the segment
 - second column \rightarrow first index (column) of the segment in **ChannelData**
 - third column \rightarrow last index (column) of the segment in **ChannelData**

Folder "FrameStream"

Navigation: /Data/Recording_x/FrameStream

(Organisational) folder for all frame-based streams of this recording

Attributes:

none

Datasets:

none

Subfolder "Stream_x" of "FrameStream"

3.4.2019

Navigation: /Data/Recording_x/FrameStream/Stream_x

Folder that contains all Frame-Entities of one Frame-Stream:

Attributes:

Name	Description	Data Type	StreamInfoVersion
StreamInfoVersion	Version number of the meta information structure	[Int(32-bit Integer),Scalar]	1 ≤
Label	Label	[String,Scalar]	1 ≤
SourceStreamGUID	GUID of the source stream	[String,Scalar]	1 ≤
StreamGUID	GUID	[String,Scalar]	1 ≤
StreamType	Type of the stream Frame	[String,Scalar]	1 ≤
DataSubType	Sub-type of the event stream (e.g. SpikeTimeStamp)	[String,Scalar]	1 ≤

Datasets:

- Matrix InfoFrame → n × 24 matrix of describing information vectors for the n Frame-Entities:
 Attributes: InfoVersion → Version number of the Info-Objects [Int(32-bit Integer),Scalar]

Name	Description	Data Type	InfoVersion
FrameID	ID of the frame entity as given by the recording software	[Int(32-bit Integer),Array(Size 1)]	$1 \leq$
FrameDataID	ID of the frame entity inside the stream folder that maps this information vector to the entity folder (FrameDataID \rightarrow subfolder FrameDataEntity_FrameDataID)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
GroupID	ID of the group that this frame entity belongs to	[Int(32-bit Integer),Array(Size 1)]	1 ≤
Label	Label of the entity	[String,Array]	1 ≤
RawDataType	Type of the raw data	[String,Array]	1 ≤
Unit	Physical unit of the measured sensor value	[String,Array]	1 ≤
Exponent	Exponent $n \Rightarrow 1En$ resp. 10^n in which the sensor values magnitude is measured (e.g. k,m, μ ,)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
ADZero	ADC-Step that represents the 0-point of the measuring range of the ADC	[Int(32-bit Integer),Array(Size 1)]	1 ≤
ADCBits	Number of bits used by the AD-Converter	[Int(32-bit Integer),Array(Size 1)]	1 ≤
Tick	Sample tick Δ between two frames in μ s \Rightarrow sampling frequency = 1000000 / Δ	[Long(64-bit Integer),Array(Size 1)]	1 ≤
HighPassFilterType	Type of the high-pass filter (empty string if not available)	[String,Scalar]	$1 \leq$
HighPassFilterCutOffFrequency	Cut-off frequency of the high-pass filter ('-1'-String if not available)	[String,Scalar]	1 ≤
HighPassFilterOrder	Order of the high-pass filter (-1 if not available)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
LowPassFilterType	Type of the low-pass filter (empty string if not available)	[String,Scalar]	1 ≤
LowPassFilterCutOffFrequency	Cut-off frequency of the low-pass filter ('-1'-String if not available)	[String,Scalar]	$1 \leq$
LowPassFilterOrder	Order of the low-pass filter (-1 if not available)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
SensorSpacing	Distance between adjacent sensors in µm	[Int(32-bit Integer),Array(Size 1)]	1 ≤
FrameLeft	Sensor count of the left edge of the entity frame based on the reference frame	[Int(32-bit Integer),Array(Size 1)]	1 ≤

HDF5 MCS Raw Data Definition - Multi Channel Systems Wiki

FrameTop	Sensor count of the top edge of the entity frame based on the reference frame	[Int(32-bit Integer),Array(Size 1)]	$1 \leq$
FrameRight	Sensor count of the right edge of the entity frame based on the reference frame	[Int(32-bit Integer),Array(Size 1)]	$1 \leq$
FrameBottom	Sensor count of the bottom edge of the entity frame based on the reference frame	[Int(32-bit Integer),Array(Size 1)]	$1 \leq$
ReferenceFrameLeft	Sensor count of the left edge of the reference frame (defined by the used sensor array)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
ReferenceFrameTop	Sensor count of the left edge of the reference frame (defined by the used sensor array)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
ReferenceFrameRight	Sensor count of the left edge of the reference frame (defined by the used sensor array)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
ReferenceFrameBottom	Sensor count of the left edge of the reference frame (defined by the used sensor array)	[Int(32-bit Integer),Array(Size 1)]	1 ≤

Subfolder "FrameDataEntity_x"

Navigation: /Data/Recording_x/FrameStream/Stream_x/FrameDataEntity_x

Contains all datasets of the Frame-Entity x

Datasets:

- Matrix ConversionFactors \rightarrow n \times m matrix of conversion factors for the sensor array
- 3-dimensional Data-Cube FrameData → cube of the frame data organized as one frame to one sample time point (n × m matrix of sampled signal values per sensor) × sample time points
 reconstruct the value of the measured signal: y = (FrameData[x,y,t] ADZero) * ConversionFactors[x,y]
 - reconstruct the sample time point:
- Matrix FrameDataTimeStamps \rightarrow k \times 3 matrix of segments where the rows are one segment and the columns are:
 - first column \rightarrow time stamp of the first sample point of the segment
 - second column \rightarrow first index (z-axis) of the segment in FrameData
 - third column \rightarrow last index (z-axis) of the segment in FrameData

Datasets:

none

Folder "EventStream"

Navigation: /Data/Recording_x/EventStream

(Organisational) folder for all event-based streams of this recording

Attributes:

none

Datasets:

none

Subfolder "Stream_x" of "EventStream"

Navigation: /Data/Recording_x/EventStream_x

Folder that contains all Event-Entities of one Event-Stream:

Attributes:

Name	Description	Data Type	StreamInfoVersion
StreamInfoVersion	Version number of the meta information structure	[Int(32-bit Integer),Scalar]	1 ≤
Label	Label	[String,Scalar]	1 ≤
SourceStreamGUID	GUID of the source stream	[String,Scalar]	1 ≤
StreamGUID	GUID of the current stream	[String,Scalar]	1 ≤
StreamType	Type of the stream Event	[String,Scalar]	1 ≤
DataSubType	Sub-type of the event stream (e.g. StgSideband, UserInput, DigitalPort)	[String,Scalar]	1 ≤

Sub-type Description:

- StgSideband → The event is associated to a STG sideband change.
- UserInput \rightarrow The event is associated with an user input.
- DigitalPort → The event is associated with a digital port change.

Datasets:

- Matrix InfoEvent → n × 7 matrix of describing information vectors for the n Event-Entities:
 - Attributes: InfoVersion → Version number of the Info-Objects [Int(32-bit Integer),Scalar]

Name	Description	Data Type	InfoVersion
EventID	ID of the event entity	[Int(32-bit Integer),Array(Size 1)]	1≤
GroupID	ID of the group that the entity belongs to	[Int(32-bit Integer),Array(Size 1)]	1≤
Label	Label of the entity	[String,Array]	1≤
RawDataType	Type of the raw data	[String,Array]	1≤
RawDataBytes	Number of bytes of the raw data type	[Int(32-bit Integer),Array(Size 1)]	1≤
SourceChannelIDs	Comma separated list of ID's of (source) channel that were involved in the generation of this event	[String,Array]	1 ≤
SourceChannelLabels	Comma separated list of labels of the source channels	[String,Scalar]	$1 \leq$

- 2-dimensional matrix EventEntity $x \rightarrow 5 \times n$ matrix \Rightarrow n events with describing vector (time stamp of event, duration of event, event info 1, info 2)
 - Attributes: Short description of content

 - $t_{\text{event i}} = \text{EventEntity}_x[0, i] \text{ in } \mu s$ $\Delta_{\text{event i}} = \text{EventEntity}_x[1, i] \text{ in } \mu s$

Folder "SegmentStream"

Navigation: /Data/Recording_x/SegmentStream

(Organisational) folder for all segment-based streams of this recording. A segment is a cutout of parts of the sampled signal relative to an event, defined by a pre- and post interval.

Attributes:

Datasets:

none

Subfolder "Stream_x" of "SegmentStream"

Navigation: /Data/Recording_x/SegmentStream_X

Folder that contains all Segment-Entities of one Segment-Stream:

Attributes:

Name	Description	Data Type	StreamInfoVersion
StreamInfoVersion	Version number of the meta information structure	[Int(32-bit Integer),Scalar]	$1 \leq$
Label	Label	[String,Scalar]	1 ≤
SourceStreamGUID	GUID of the source stream	[String,Scalar]	1 ≤
StreamGUID	GUID of the current stream	[String,Scalar]	1 ≤
StreamType	Type of the stream Segment	[String,Scalar]	1 ≤
DataSubType	Sub-type of the segment stream (e.g. Spike)	[String,Scalar]	1 ≤

Datasets:

- Matrix InfoSegment \rightarrow n \times 7 matrix of describing information vectors for the n Segment-Entities:
 - Attributes: InfoVersion → Version number of the Info-Objects [Int(32-bit Integer),Scalar]

Name	Description	Data Type	InfoVersion
SegmentID	ID of the segment entity	[Int(32-bit Integer),Array(Size 1)]	1 ≤
GroupID	ID of the group that the segment entity belongs to	[Int(32-bit Integer),Array(Size 1)]	1≤
Label	Label of the entity	[String,Array]	1≤
PreInterval	Time interval in µs before the segment defining event occured - definition of the beginning of the segment	[Int(64-bit Integer),Array(Size 1)]	1 ≤
PostInterval	Time interval in μ s after the segment defining event occured - definition of the end of the segment length of the segment = PreInterval + PostInterval in μ s	[Int(64-bit Integer),Array(Size 1)]	1 ≤
SegmentType	Type of the segment (e.g. SpikeCutout)	[String,Array]	$1 \leq$
SourceChannelIDs	Comma separated list of ID's of (source) channels that the segements are taken from \rightarrow Link to the SourceChannelInfo matrix	[String,Array]	1 ≤

2-dimensional matrix SourceChannelInfo → n × 15 matrix ⇒ n of describing vectors for the n source channels, the structure is the same as in ChannelInfo used in section Sub-folder "Stream_x" of "AnalogStream"
 Attributes: InfoVersion → Version number of the Info-Objects [Int(32-bit Integer),Scalar]

- Vector SegmentData_ts_x \rightarrow n time stamps in μ s of the event triggering the segment, one for each of the n segments contained by segment entity x
- 2-dimensional matrix or 3-dimensional cube SegmentData_x → k × n matrix (k sample points for one segment, n number of sampled segments) or k × m × n cube (k sample points for one segment, m number of segment data:
 - Attributes: SourceChannelID \rightarrow Comma separated list of ID's of (source) channels that the segments are taken from [String, Scalar] (the same as in InfoSegment, repeated for clarification)
 - reconstruct the value of the measured segment signal (only one segment $id_{\text{segment}} \rightarrow 2$ -dimensional matrix M[row,col]):
 - $t_{ind}[row, col] = \text{SegmentData ts x}[col] + (row 1) * \text{tick}_{\text{source-channel}} \text{PreInterval}$ in μ s
 - $= y(id_{\text{segment}}, t_{ind}(row, col)) = (\text{SegmentData } x[ow, col] \text{ADZero}_{\text{source-channel}}) * \text{ConversionFacto}_{\text{ource-channel}} * 10^{\text{Exponent}_{\text{ource-channel}}} \\$

in InfoChannel[source-channel]. Unit

- reconstruct the value of the measured segment signal (m segments \rightarrow multi-segments \rightarrow 3-dimensional cube M[row,col,z]):
 - $\operatorname{col} \rightarrow id_{\operatorname{segment}} \rightarrow \operatorname{source-channel}$
 - $t_{ind}[row, col, z] = \text{SegmentData ts } \mathbf{x}[\mathbf{z}] + (row 1) * \text{tick}_{\text{source-channel}[col]}$ in μ s
 - $y(id_{\text{segment}}, t_{ind}(row, z)) = (\text{SegmentData } \mathbf{x}[row, \text{col}, z] \text{ADZero}_{\text{source-channel[col]}}) * \text{ConversionFactor}_{\text{source-channel[col]}} * 10^{\text{Exponent}_{\text{source-channel[col]}}}$ in InfoChannel[source-channel[col]]. Unit

DataSubType-Average: Subfolder "Stream_x" of "SegmentStream"

Navigation: /Data/Recording_x/SegmentStream_x

Folder that contains all Segment-Entities of one Segment-Stream with DataSybType == Average:

Attributes: no difference to the standard case above

Datasets:

- Matrix InfoSegment: no difference to the standard case above
- Matrix SourceChannelInfo: no difference to the standard case above
- $(3 \times n)$ matrix AverageData_Range_x \rightarrow (start, end, count) per segment average \times count of segment averages contained by segment entity x. start and end denote the start and end timestamp in μ s of the interval that contains all averaged segments. count is the number of averaged segments.
 - Attributes: description of the content
- $(2 \times k \times n)$ cube AverageData_x \rightarrow (mean and standard deviation) $\times k$ sample points of the segment $\times n$ number of segment averages
 - Attributes:: description of the content
 - reconstruct the value of the mean and standard deviation of the average segment (n average segments \rightarrow 3-dimensional cube M[row,col,z]):
 - row: mean \rightarrow row = 0; StdDev \rightarrow row = 1
 - col: $t_{ind}(col) = (col 1) * tick_{source-channel} \rightarrow time range (0, PreInterval[SegmentID] + PreInterval[SegmentID]) in \mu s$
 - $z: z = id_{average}$ (number of average segment)
 - $\bullet Mean(id_{\text{average}}, t_{ind}(col)) = (\text{AverageData } \texttt{x}[0, \text{col}, id_{\text{average}}] \text{ADZero}_{\text{source-channel}}) * \text{ConversionFactor}_{\text{source-channel}} * 10^{\text{Exponent}_{\text{source-channel}}} \text{ in InfoChannel}_{\text{source-channel}}. Unit$
 - $StdDev(id_{average}, t_{ind}(col)) = AverageData x[1, col, id_{average}] * ConversionFactor_{source-channel} * 10^{Exponent_{source-channel}}$ in InfoChannel_{source-channel}. Unit

Folder "TimeStampStream"

Navigation: /Data/Recording_x/TimeStampStream

(Organisational) folder for all TimeStamp-based streams of this recording

Attributes:

none

Datasets:

none

Subfolder "Stream_x" of "TimeStampStream"

Navigation: /Data/Recording_x/TimeStampStream_Stream_x

Folder that contains all TimeStamp-Entities of one TimeStamp-Stream:

Name	Description	Data Type	StreamInfoVersion
StreamInfoVersion	Version number of the meta information structure	[Int(32-bit Integer),Scalar]	$1 \leq$
Label	Label	[String,Scalar]	$1 \leq$
SourceStreamGUID	GUID of the source stream	[String,Scalar]	$1 \leq$
StreamGUID	GUID of the current stream	[String,Scalar]	$1 \leq$
StreamType	Type of the stream TimeStamp	[String,Scalar]	$1 \leq$
DataSubType	Sub-type of the TimeStamp stream (e.g. NeuralSpike)	[String,Scalar]	$1 \leq$

Sub-type Description:

■ **NeuralSpike** → The entity contains time stamps of neural spikes

Datasets:

Matrix InfoTimeStamp → n × 7 matrix of describing information vectors for the n Event-Entities:
 Attributes: InfoVersion → Version number of the Info-Objects [Int(32-bit Integer),Scalar]

Name	Description	Data Type	InfoVersion
TimeStampEntityID	ID of the event entity	[Int(32-bit Integer), Array(Size 1)]	$1 \leq$
GroupID	ID of the group that the entity belongs to	[Int(32-bit Integer),Array(Size 1)]	1≤
Label	Label of the entity	[String,Array]	1≤
Unit	Physical unit of the measured sensor value	[String,Array]	1≤
Exponent	Exponent $n \Rightarrow 1$ En resp. 10^{n} in which the channel values magnitude is measured (e.g. k,m, μ ,)	[Int(32-bit Integer),Array(Size 1)]	1 ≤
SourceChannelIDs	Comma separated list of ID's of (source) channel that were involved in the generation of this event	[String,Array]	1 ≤
SourceChannelLabels	Comma separated list of labels of the source channels	[String,Scalar]	$1 \leq$

• Vector TimeStampEntity_x \rightarrow n time stamps in μ s

Comment

All time-related information except dates (100ns ticks) are given in microsecond ticks!!